#lm linear regression, normal error, constant variance
Y = a + bX + E a Linear Predictor
#glm generalize linear model, non-normal error, non-constant variance
LogY = a + bX + E
Y = e^a*e^bX + E a Multiplicater, exponential and Logthermic
in glm, individual slope gives an estimate of multiplitive change
in the reponse variable for one unit change in corresponding explanatory variable
#gls: generalise least square model, correlated error, spatial, temperal/pattern/trends
airquality
plot(Ozone~Wind,airquality)
model1=lm(Ozone~Wind,airquality)
plot(model1)
coef(model1)
#prediction for Wind speed at 19 and 20 mph
coef(model1)[1]
Ozone1=coef(model1)[1]+coef(model1)[2]*19
Ozone2=coef(model1)[1]+coef(model1)[2]*20
Ozone1
Ozone2
##poisson is generalize linear model
model2=glm(Ozone~Wind,airquality,family=poisson)
glm(model2)
# Coefficients:
#(Intercept) Wind
# 96.873 -5.551
Ozone1.glm=exp(coef(model2)[1]+coef(model2)[2])*19
Ozone2.glm=exp(coef(model2)[1]+coef(model2)[2])*20
Ozone1.glm
Ozone2.glm
plot(Ozone~Wind,airquality)
Ozone1.glm/Ozone2.glm
# 0.95
exp(coef(model2))[2] #exp(-5.551)
###gls
library(nlme)
model3.gls=gls(Ozone~Wind,airquality)
model3=gls(Ozone~Wind,airquality,na.action=na.exclude)
head(airquality)
?airquality
paste(1973,airquality$Month,airquality$Day, sep=",")
as.Date(paste(1973,airquality$Month,airquality$Day, sep=","))
airquality$Date
paste(1973,airquality$Month,airquality$Day, sep=",")
library(lattice)
xyplot(Ozone~Date,airquality)
model4=gls(Ozone~Wind*Date,airquality,na.action=na.exclude)
air2=subset(airquality, complete.cases(Ozone))
model4=gls(Ozone~Wind*Date,air2)
plot(ACF(model5=~Date),alpha=0.5)
model6=(update(model5,correlation=corAR1())
library(MuMIn)
AICc(model5,model6)
summary(model6)
Y = a + bX + E a Linear Predictor
#glm generalize linear model, non-normal error, non-constant variance
LogY = a + bX + E
Y = e^a*e^bX + E a Multiplicater, exponential and Logthermic
in glm, individual slope gives an estimate of multiplitive change
in the reponse variable for one unit change in corresponding explanatory variable
#gls: generalise least square model, correlated error, spatial, temperal/pattern/trends
airquality
plot(Ozone~Wind,airquality)
model1=lm(Ozone~Wind,airquality)
plot(model1)
coef(model1)
#prediction for Wind speed at 19 and 20 mph
coef(model1)[1]
Ozone1=coef(model1)[1]+coef(model1)[2]*19
Ozone2=coef(model1)[1]+coef(model1)[2]*20
Ozone1
Ozone2
##poisson is generalize linear model
model2=glm(Ozone~Wind,airquality,family=poisson)
glm(model2)
# Coefficients:
#(Intercept) Wind
# 96.873 -5.551
Ozone1.glm=exp(coef(model2)[1]+coef(model2)[2])*19
Ozone2.glm=exp(coef(model2)[1]+coef(model2)[2])*20
Ozone1.glm
Ozone2.glm
plot(Ozone~Wind,airquality)
Ozone1.glm/Ozone2.glm
# 0.95
exp(coef(model2))[2] #exp(-5.551)
###gls
library(nlme)
model3.gls=gls(Ozone~Wind,airquality)
model3=gls(Ozone~Wind,airquality,na.action=na.exclude)
head(airquality)
?airquality
paste(1973,airquality$Month,airquality$Day, sep=",")
as.Date(paste(1973,airquality$Month,airquality$Day, sep=","))
airquality$Date
paste(1973,airquality$Month,airquality$Day, sep=",")
library(lattice)
xyplot(Ozone~Date,airquality)
model4=gls(Ozone~Wind*Date,airquality,na.action=na.exclude)
air2=subset(airquality, complete.cases(Ozone))
model4=gls(Ozone~Wind*Date,air2)
plot(ACF(model5=~Date),alpha=0.5)
model6=(update(model5,correlation=corAR1())
library(MuMIn)
AICc(model5,model6)
summary(model6)
No comments:
Post a Comment